Let $w$ $(Im\, w \neq 0)$ be a complex number. Then the set of all complex number $z$ satisfying the equation $w - \overline {w}z = k\left( {1 - z} \right)$ , for some real number $k$, is
$\left\{ {z:\left| z \right| = 1} \right\}$
$\left\{ {z:z = \overline z } \right\}$
$\left\{ {z:z \ne 1} \right\}$
$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$
If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is
If $z$ is a purely real number such that ${\mathop{\rm Re}\nolimits} (z) < 0$, then $arg(z)$ is equal to
If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
If $z_1 , z_2$ and $z_3, z_4$ are $2$ pairs of complex conjugate numbers, then $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals